rancher-partner-charts/charts/prophetstor/federatorai/README.md

13 KiB

Federator.ai Operator

Federator.ai helps enterprises optimize cloud resources, maximize application performance, and save significant cost without excessive over-provisioning or under-provisioning of resources, meeting the service-level requirements of their applications.

Enterprises often lack understanding of the resources needed to support their applications. This leads to either excessive over-provisioning or under-provisioning of resources (CPU, memory, storage). Using machine learning, Federator.ai determines the optimal cloud resources needed to support any workload on Kubernetes and helps users find the best-cost instances from cloud providers for their applications.

Multi-layer workload prediction

Using machine learning and math-based algorithms, Federator.ai predicts containerized application and cluster node resource usage as the basis for resource recommendations at application level as well as at cluster node level. Federator.ai supports prediction for both physical/virtual CPUs and memories.

Auto-scaling via resource recommendation

Federator.ai utilizes the predicted resource usage to recommend the right number and size of pods for applications. Integrated with Datadog's WPA, applications are automatically scaled to meet the predicted resource usage.

Application-aware recommendation execution

Optimizing the resource usage and performance goals, Federator.ai uses application specific metrics for workload prediction and pod capacity estimation to auto-scale the right number of pods for best performance without overprovisioning.

Multi-cloud Cost Analysis

With resource usage prediction, Federator.ai analyzes potential cost of a cluster on different public cloud providers. It also recommend appropriate cluster nodes and instance types based on resource usage.

Custom Datadog/Sysdig Dashboards

Predefined custom Datadog/Sysdig Dashboards for workload prediction/recommendation visualization for cluster nodes and applications.

SUSE/Rancher Marketplace

Federator.ai can also be directly installed from SUSE/Rancher Marketplace. Please see the following how-to video for the installation procedure.

https://www.youtube.com/watch?v=mBAPCCAH8kg

Additional resources

Want more product information? Explore detailed information about using this product and where to find additional help.

Prerequisites

  • The Kubernetes version 1.16 or later.
  • The Helm version is 3.x.x or later.

Add Helm chart repository

helm repo add prophetstor https://prophetstor-ai.github.io/federatorai-operator-helm/

Test the Helm chart repository

helm search repo federatorai

Installing with the release name my-name:

helm install `my-name` prophetstor/federatorai --namespace=federatorai --create-namespace

To uninstall/delete the my-name deployment:

helm ls --all-namespaces
helm delete `my-name` --namespace=federatorai

To delete the Custom Resource Definitions (CRDs):

kubectl delete crd alamedaservices.federatorai.containers.ai

Configuration

The following table lists some of the configurable parameters of the chart. Their default values and other configurable parameters are specified inside values.yaml.

Parameters

Global parameters

Parameter Description
global.imageRegistry Image registry
global.imageTag Image tag of Federator.ai
global.imagePullPolicy Specify a imagePullPolicy
global.imagePullSecrets Optionally specify an array of imagePullSecrets.
global.storageClassName Persistent Volume Storage Class
global.commonAnnotations Common annotations to be added to resources
global.commonLabels Common labels to be added to resources
global.podAnnotations Annotations to be added to pods
global.podLabels Labels to be added to pods
global.resourcesEnabled Boolean to specify if you want to apply resources limits/requests settings

alamedaAi Parameters

Parameter Description
alamedaAi.persistence.dataStorageSize Persistence storage size for data volume

alamedaInfluxdb Parameters

Parameter Description
alamedaInfluxdb.persistence.dataStorageSize Persistence storage size for data volume

fedemeterInfluxdb Parameters

Parameter Description
fedemeterInfluxdb.persistence.dataStorageSize Persistence storage size for data volume

federatoraiDashboardFrontend Parameters

Parameter Description
federatoraiDashboardFrontend.ingress.enabled Enable ingress controller resource
federatoraiDashboardFrontend.ingress.pathType Ingress Path type
federatoraiDashboardFrontend.ingress.hostname Default host for the ingress resource
federatoraiDashboardFrontend.ingress.path The Path to REST. You may need to set this to '/*' in order to use this with ALB ingress controllers
federatoraiDashboardFrontend.ingress.annotations Additional annotations for the Ingress resource. To enable certificate autogeneration, place here your cert-manager annotations.
federatoraiDashboardFrontend.ingress.ingressClassName IngressClass that will be be used to implement the Ingress (Kubernetes 1.18+)
federatoraiDashboardFrontend.ingress.tls Enable TLS configuration for the hostname defined at federatoraiDashboardFrontend.ingress.hostname parameter
federatoraiDashboardFrontend.ingress.extraHosts The list of additional hostnames to be covered with this ingress record.
federatoraiDashboardFrontend.ingress.extraPaths Additional arbitrary path/backend objects
federatoraiDashboardFrontend.ingress.extraTls The tls configuration for additional hostnames to be covered with this ingress record.
federatoraiDashboardFrontend.ingress.secrets If you're providing your own certificates, please use this to add the certificates as secrets
federatoraiDashboardFrontend.service.type Kubernetes service type, valid value: LoadBalancer, NodePort
federatoraiDashboardFrontend.service.port Public service port
federatoraiDashboardFrontend.service.targetPort Container port of services, use 9000 for accessing over HTTP and 9001 for accessing over HTTPS
federatoraiDashboardFrontend.service.clusterIP Specific cluster IP when service type is cluster IP. Use None for headless service
federatoraiDashboardFrontend.service.nodePort Kubernetes Service nodePort if service type is NodePort
federatoraiDashboardFrontend.service.loadBalancerIP Load Balancer IP Adress if service type is LoadBalancer
federatoraiDashboardFrontend.service.loadBalancerSourceRanges Address that are allowed when svc is LoadBalancer
federatoraiDashboardFrontend.service.externalTrafficPolicy Enable client source IP preservation
federatoraiDashboardFrontend.service.healthCheckNodePort Specifies the health check node port (numeric port number) for the service if externalTrafficPolicy is set to Local.
federatoraiDashboardFrontend.service.annotations Additional annotations for REST service

federatoraiPostgresql Parameters

Parameter Description
federatoraiPostgresql.persistence.dataStorageSize Persistent Volume Size for data storage

Specify each parameter using the --set key=value[,key=value] argument to helm install.

Alternatively, a YAML file that specifies the values for the parameters can be provided while installing the chart. For example,

helm install `my-name` prophetstor/federatorai -f values.yaml --namespace=federatorai --create-namespace

Tip: You can use the default values.yaml